

A Framework for Risk Analysis in Smart Grid Perspective Based Approach

Rani Yesudas
rani.yesudas@anu.edu.au
&
Roger Clarke
roger.clarke@anu.edu.au

Available at : http://www.rogerclarke.com/EC/SG-FRA.html

Introduction

- · From traditional grid to a smart grid
 - significant new risk to the energy sector .
- · Risk analysis is essential
 - harms, threats and vulnerabilities.
- Challenging to choose a risk analysis methodology.
- Devised a framework specifically for the Smart Grid and Smart Metering System
 - Perspective Based Approach

Smart Grid

- Efficient Energy Management
 - Accurately measuring the power usage.
 - Reduction of peak demand.
 - Lower production cost.
 - Lower carbon emissions.

3

Smart Meter

- Identified as a primary requirement in a smart grid.
- Smart meter roll out in many countries some mandated.
- During and after roll-out many schemes have been subjected to considerable criticism.
 - Health
 - Security
 - Privacy

Reverse Triad - A I C

- Availability of electricity & information
 - Disruption in communication and energy flow.
- Integrity of data
 - Unauthorized modification / insertion of the data.
- · Confidentially of data
 - Customer information & detailed information of electricity usage .

5

Issues

- Protests and demonstrations against smart metering systems.
- Reasons for their protests
 - Health hazards.
 - Privacy breaches.
- Misleading information
 - Smart Meter a 'spy' from 1 min interval reading.
 - Erroneous information sources large social impacts.

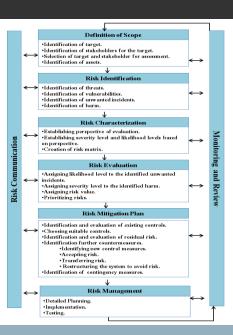
Preparation for the risk analysis framework

- Chaos in Risk Terms
 - ISO 27005
 - SP 800-30 by NIST
 - Working Group (WG)
 - Society of Risk Analysis (SRA)
- · Definition used consistently without confusion
 - DPIA Template in 2012 Working Party highlighted it often confused risk and threat.

7

Identifying and Defining Risk Elements

- Stakeholder
- Asset
- Threat
- Vulnerability
- Harm
- Controls
- Risk


Terminologies used for Risk Elements

Risk Elements	Different Terminologies Used
Stakeholder	User, Party
Asset	Resource, Property
Threat	Hazard
Vulnerability	Weakness, Susceptibility
Harm	Impact, Consequence, Damage, Effects of Unwanted Incident
Control	Safeguard, Treatment, Countermeasure
Risk	Probability, Chance

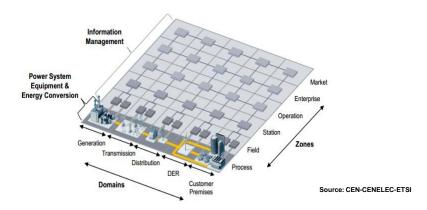
9

Proposed Framework

Definition of Scope

- Identify target of evaluations.
- Involvement with one or many stakeholders.
- Choose the target for assessment.
- Identify the assets involved.

11


Models for Smart Grids

- Smart Grid Conceptual Model (SGCM)
 - established by the National Institute of Standards and Technology (NIST)
- Smart Grid Architecture Model (SGAM)
 - established by the Working Group Reference Architecture (SG-CG/RA)

Smart Grid plane

- · More comprehensive coverage of parties
- · Cells assists the analyst in identifying the relevant scenarios

12

Choice of Target

- Each Domain/Zone cell
 - e.g. in the Customer Premises/Process cell the target will be a smart meter.
- · Zone to Zone
 - e.g. zones Process and Field we can target the data transmitted from the smart meter to the concentrators/collectors and vice versa.
- Domain to Domain

SGAM can be used for

- Coordinate work between different stakeholders
- Map use cases
- Develop interface specifications
- · Map portfolio
- · Map customers and competitors
- Identify new applications, services
- · Analyse installed architectures and migration scenarios

15

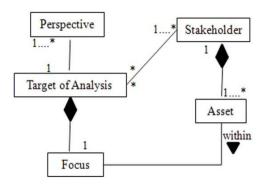
Limitation of SGAM model

- Lacks to identify third parties
 - digital certificate suppliers/revocation services, financial services, manufacturers & system integrators.
- But these limitation can be easily rectified.

Risk Characterization

- Vital step .
- · Perspective of analysis.
 - e.g. an unauthorized party gaining read-only access to the meter data may occur as a minor risk to a utility provider but from the perspective of the consumer it is still a major risk.
- · Severity levels and likelihood levels vary.

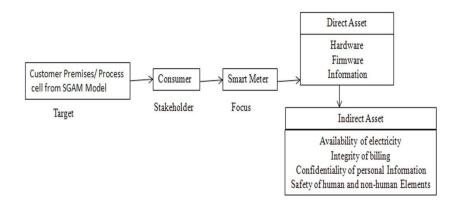
17



Rest of the steps

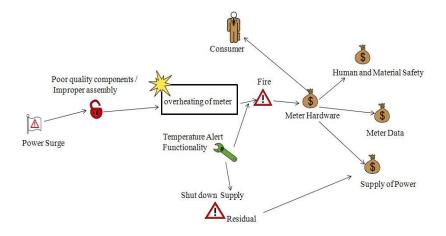
- Evaluation
 - Likelihood level, severity level, Prioritizing risk
- Mitigation
 - Control evaluation and identification
- Management
 - Detailed Planning ,Implementation ,Testing
- Communication
 - Stakeholder involvement and education, mass media communication
- · Monitoring and Review

Defining Scope for Analysis



Using CORAS – style layouts

10



Choosing Focus of Analysis

Scenario Analysis

21

Limitation

- · Lacks empirical testing
 - needs to have industrial tie up to test and validate results.

Future Work

- Use this framework to analyse risk from a consumer perspective
 - Consumer concerns
 - Consumer responses
 - Identify consumer requirements

23

Thank You!

A Framework for Risk Analysis in Smart Grid Perspective Based Approach

Rani Yesudas rani.yesudas@anu.edu.au

&

Roger Clarke roger.clarke@anu.edu.au

Available at: http://www.rogerclarke.com/EC/SG-FRA.html

