

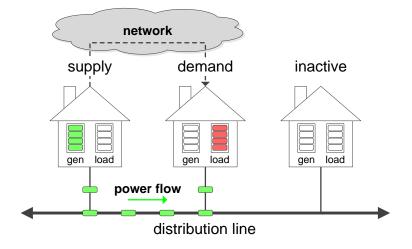
Founded 1870 | Rolla, Missouri

Physical Attestation of Cyber Processes in the Smart Grid

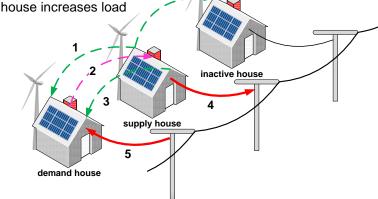
Tom Roth, Ph.D. Student (tprfh7@mst.edu) Bruce McMillin, Ph.D. (ff@mst.edu)

Department of Computer Science Missouri University of Science and Technology (Formerly the University of Missouri-Rolla) Rolla, MO 65409-0350

Supported in part by the Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM) under grant NSF EEC-0812121 and in part by the Missouri S&T Intelligent Systems Center.


The FREEDM (Future Renewable Electric Energy Delivery and Management) Concept

- Distributed Grid Intelligence (DGI)
 - People share energy resources
 - Neighborhood or industrial level
 - Where is the centralized controller?
 - Peer-to-peer



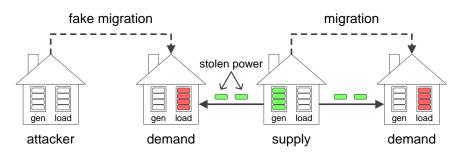
Smart Neighborhood

Power Migrations

- 1. Supply house advertises its excess generation
- 2. Demand house requests power from supplier
- 3. Supply house forms a migration contract
- 4. Supply house increases generation 1
- 5. Demand house increases load

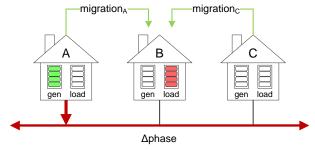
New Threats - Distributed System

- The current electric power grid relies on the notion of a centralized power authority.
- No centralized authority is involved with the distributed process of power migrations.
- A compromised house can trick its peers into making bad power migrations in the absence of the centralized authority.


Fake Supply Attack

Consider an attack that removes one step from the system operation:

- 1. Supply house advertises its excess generation
- 2. Demand house requests power from supplier
- 3. Supply house forms a migration contract


4. Supply house increases generation

5. Demand house increases load

Concurrent Fake Supply Attack

• House C launches a fake supply attack during a migration from A:

· During the attack, the low-level view of house B is:

• This view is consistent with either *increase*_A or *increase*_C!

Information Flow Models

- Non-Interference
 - High-level events do not interfere with the low level outputs
- Non-Inference
 - Removing high-level events leaves a valid system trace
- Non-Deducibility
 - Low-level observation is compatible with any of the high-level inputs.

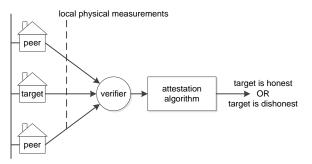
Typically we use these to blind an attacker, here we use them to model a STUXNET-like attack

Nondeducible Attack

• Definition:

A low-level view of a system is *nondeducible* if the view is consistent with all permutations of high-level commands.

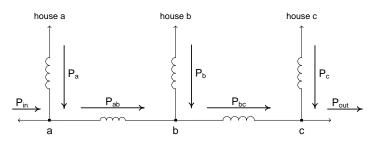
• Theorem:


An attacker who launches a fake supply attack concurrent with another migration in the system is *nondeducible* and thus unidentifiable.

Solutions in Literature

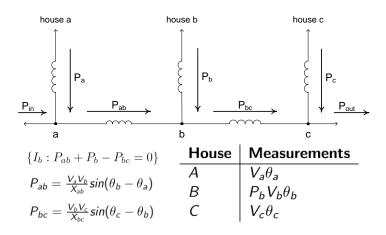
- Tamper Resistance: Prevent an attack using compromise-resistant hardware.
- Bad Data Detection: Detect malicious meter readings at a centralized controller.
- Distributed Diagnosis: Detect a fault using peer evaluations in a distributed system.
- Remote Attestation: Detect a compromised node using a challenge-response protocol.

Physical Attestation

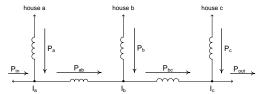

• A verifier checks if another cyber process is compromised using physical measurements.

• Similar to a remote attestation algorithm that uses the physical layer as a shared memory.

Conservation of Power


• Conservation of Power at $\underline{\mathbf{b}}$: $\{I_b: P_{ab} + P_b - P_{bc} = 0\}$

- I_b is an invariant that must be true for the physical system.
- If I_b is violated, then at least one house must be dishonest.


Physical Measurements

• The invariant is instantiated using measurements from each house:

Impact of Compromised Node

• Assume *b* is malicious and the other two houses are honest.

A set of invariants are violated when b falsifies its values:

Falsified Values	Violated Invariants
P_b	I _b
$V_b \theta_b$	$I_a I_b I_c$
$P_b V_b \theta_b$	$I_a I_c$

· The dishonest house is the midpoint of each violation set.

Unique Violation Pattern

• It requires observations from 7-houses to find a unique violation pattern:

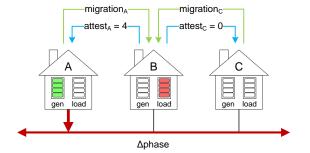
M	M		M	M	M	M
N1	N2	N3	N4	N5	N6	N7
T						
	а	b	С	d	е	

- It is not possible to produce a unique pattern with fewer observations.
- This set of observations can be used to detect when house 4 performs a fake supply attack

Ν	Falsified	Violations
1	$V_1 \theta_1$	l _a
	P_2	l _a
2	$V_2 \theta_2$	$I_a I_b$
	$P_2V_2\theta_2$	I _b
	P ₃	I _b
3	$V_3\theta_3$	$I_a I_b I_c$
	$P_3V_3\theta_3$	$I_a I_c$
	P4	I _c
4	$V_4 heta_4$	$I_b I_c I_d$
	$P_4V_4 heta_4$	$I_b I_d$
	P_5	I _d
5	$V_5 \theta_5$	$I_c I_d I_e$
	$P_5V_5\theta_5$	$I_c I_e$
	P_6	I _e
6	$V_6 heta_6$	$I_d I_e$
	$P_6V_6\theta_6$	I _d
7	$V_7 \theta_7$	I _e

Attestation Algorithm

	Algorithm 1: Secure Power Calculation						
	Data: Index t of the node to attest						
	Data: The time of the attestation						
	Data: A small tolerance ϵ						
	Result : Actual generation P_t at node t						
1	get values $\{\hat{P}_{t-2}, \ldots, \hat{P}_{t+2}\}$ for given <i>time</i>	<pre>// get cyber message history</pre>					
2	$!$ get values $\{V_{t-3}\theta_{t-3}, \ldots, V_{t+3}\theta_{t+3}\}$ for given time // get physical meter readings						
3	for $i \leftarrow t-2$ to $t+2$ do	<pre>// evaluate each invariant</pre>					
4	$P_{i-1,i} \leftarrow \frac{V_{i-1}V_i}{X_{i-1,i}}\sin(\theta_i - \theta_{i-1})$						
5	$P_{i,i+1} \leftarrow \frac{V_i V_{i+1}}{X_{i,i+1}} \sin(\theta_{i+1} - \theta_i)$						
6	if $ P_{i-1,i} + \hat{P}_i - P_{i,i+1} < \epsilon$ then						
7	$I_i \leftarrow true$						
8	else						
9							
10	if $\neg I_{t-1}$ and $\neg I_{t+1}$ OR $\neg I_t$ and $(\forall k \neq t)(I_k)$ then	<pre>// check the violation pattern</pre>					
11	$P_{t-1,t} \leftarrow P_{t-2,t-1} + \hat{P}_{t-1}$	-					
12	$P_{t,t+1} \leftarrow P_{t+1,t+2} - \hat{P}_{t+1}$						
13	return $P_{t,t+1} - P_{t-1,t}$	// case when t is dishonest					
14							
15	$\begin{bmatrix} \text{return } \hat{P}_t \end{bmatrix}$	// case when t is honest					


System Modifications

Two modifications make the fake supply attack deducible:

- 1. Supply house advertises its excess generation
- 2. Demand house requests power from supplier
- 3. Supply house forms a migration contract
- 4. Supply house increases generation
- 5. Demand house performs attestation as a verifier
- 6. If attestation passes, demand house increases load

Deducible Fake Supply Attack

House C launches a fake supply attack during a migration from A:

· During the attack, the low-level view of house B is:

• This view is *not* consistent with *increase_c* and therefore deducible!

Conclusion

- A software solution to compromised peers that mitigates the need for new hardware.
- More powerful than remote attestation since an attacker cannot hide the effect of its actions on the physical layer.
- Current algorithm is limited to one attack type on linear physical topologies.
- Shows new kinds of vulnerabilities induced by peer-to-peer energy and power management

http://freedm.ncsu.edu

