Structural Controllability of Networks for Non-Interactive Adversarial Vertex Removal

C. Alcaraz^{1,4}, E. Etchevés Miciolino² and S. Wolthusen^{3,4}

 ¹Computer Science Department, University of Málaga, Spain
 ²Complex Systems & Security Laboratory, Universitá Campus Bio-Medico di Roma, Italy
 ³Norwegian Information Security Laboratory, Gjøvik University College, Norway
 ⁴Information Security Group, Royal Holloway, University of London, UK

alcaraz@lcc.uma.es e.etcheves@unicampus.it

stephen.wolthusen@hig.no

September 18th 2013

- 1 Introduction
- 2 Power Domination
- 3 Network and Attack Models
- 4 Structural Controllability under Vertex Removal
- 5 Conclusions and Future Work

Controllability theory and Motivation

Controllability theory offers a general, rigorous, and well-understood framework for the design and analysis of not only control systems, but also of networks in which a control relation between vertices is required.

Controllability theory and Motivation

Controllability theory was introduced by Kalman through:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0) = x_0$$

where:

- x(t) is the vector of current states with *n* nodes at time *t*;
- **A** is an adjacency matrix $n \times n$ giving the network topology;
- **B** an *input* matrix $n \times m$, where $m \le n$, identifying the set of nodes controlled; and
- u(t) = (u₁(t),...,u_m(t)), the *input vector* which forces the system to a desired state.
- A system is *controllable* if the *controllability matrix* [*B*, *AB*, *A*²*B*, ..., *A*^{*n*-1}*B*] = n, i.e., it has full rank.

But:

How can we represent large networks with hundreds and thousands nodes using this mathematical formulation?

Controllability and Motivation

Through graph theory is possible to simplify the **control over networks**, introducing the concept of structural controllability. Let $\mathscr{G}(A, B) = (V, E)$ a digraph,

- $E = E_A \cup E_B$ the set of edges;
- $V = V_A \cup V_B$ is the set of vertices; and
- V_B represents the minimum driver node subset N_D in charge of helping the system reach a desired configuration from an arbitrary configuration in a finite number of steps.

 N_D can be obtained through the **POWER DOMINATING SET** (PDS) problem.

- The PDS problem was introduced for monitoring electric power networks, as an extension of the Dominating Set (DS) problem
- The problem can be simplified by two observation rules

Introduction

Power Domination Network and Attack Models Structural Controllability under Vertex Removal Conclusions and Future Work

Power Domination

C. Alcaraz Structural Controllability

Observation Rules

OR1

A vertex in the $\mathbf{N}_{\mathcal{D}}$ observes itself and all its neighbours

In an observed vertex v with out-degree $d \ge 2$ is adjacent to d-1 observed vertices, then the remaining unobserved vertex becomes observed as well

D

(c)

D

Royal Hollowa

Observation Rules - OR1

Algorithm 2.1: OR1 (G(V,E))

output $(DS = \{v_i, ..., v_k\}$ where $0 \le i \le |V|)$

Choose vertex
$$v \in V$$

 $DS \leftarrow \{v\}$ and $N(DS) \leftarrow \{v_i, ..., v_k\} \forall i \leq j \leq k/(v, v_j) \in E$
while $V - (DS \cup N(DS)) \neq \emptyset$
do $\begin{cases} Choose vertex \ w \in V - (DS \cup N(DS)); \\ DS \leftarrow DS \cup \{w\} \\ N(DS) \leftarrow N(DS) \cup \{v_i, ..., v_k\} \text{ where } \forall i \leq j \leq k \setminus (w, v_j) \in E; \end{cases}$
return (DS)

Observation Rules - OR2

Algorithm 2.2: OR2 (DS)

output
$$(N_D = \{v_i, \dots, v_k\}$$
 where $|N_D| \ge |DS|)$

$$\begin{split} & N_D \leftarrow DS; \\ & i \leftarrow 1; \\ & \text{while } i \leq |N_D| \\ & \text{ do } \begin{cases} Choose \ vertex \ w \in N_D \ with \ degree \ d \geq 2; \\ & \text{ if } (d-1 \ vertices \in N(w) \ and \subseteq N_D) \ and \\ & (\exists \ vertex \ w_1 \in U \ where \ w_1 \in N(w)) \\ & \text{ do } \begin{cases} N_D \leftarrow N_D \cup \{w_1\}; \\ & U \leftarrow U \setminus \{w_1\}; \\ & i \leftarrow 1; \\ & \text{ else } \{i \ \leftarrow i + 1; \end{cases} \\ & \text{ return } (PDS) \end{split}$$

ma

Generation Strategies of PDS

Three generation strategies have been defined taking into account **the vertex choice sequence when generating** *DS* **for OR1**:

 N_D^{max} Beginning with the vertex of maximum out-degree; N_D^{min} Beginning with the vertex of minimum out-degree; N_D^{rand} Randomly choosing an initial vertex

Generation Strategies of PDS

Three generation strategies have been defined taking into account **the vertex choice sequence when generating** *DS* **for OR1**:

N_D^{max} Beginning with the vertex of maximum out-degree;
 N_D^{min} Beginning with the vertex of minimum out-degree;
 N_D^{rand} Randomly choosing an initial vertex

Generation Strategies of PDS

Three generation strategies have been defined taking into account **the vertex choice sequence when generating** *DS* **for OR1**:

 N_D^{max} Beginning with the vertex of maximum out-degree; N_D^{min} Beginning with the vertex of minimum out-degree; N_D^{rand} Bandomly choosing an initial vertex

Generation Strategies of PDS

Three generation strategies have been defined taking into account **the vertex choice sequence when generating** *DS* **for OR1**:

- N_D^{max} Beginning with the vertex of maximum out-degree;
- N_D^{\min} Beginning with the vertex of minimum out-degree;
- N_D^{rand} Randomly choosing an initial vertex

Generation Strategies of PDS

Three generation strategies have been defined taking into account **the vertex choice sequence when generating** *DS* **for OR1**:

 N_D^{max} Beginning with the vertex of maximum out-degree; N_D^{min} Beginning with the vertex of minimum out-degree; N_D^{rand} Randomly choosing an initial vertex

Therefore

We assume a partial order given by the **out-degree** (\leq or \geq) in case of N_D^{max} or N_D^{min} ,

respectively; in case of N_D^{rand} , no such relation exists

But:

Are these types of control networks robustness against threats?

Network and Attack Models

C. Alcaraz Structural Controllability

Network Models

Topologies deployed:

- Random distributions: Erdös-Rényi (ER)
- Small-world distributions: Watts-Strogatz (WS)
- Power-law distributions:
 - Barabási-Albert (BA) with preferential attachment
 - Power-Law Out-Degree (PLOD)

Note that:

Power-law networks present approximated structures to the found in power networks

Five attack models have been developed under the following assumptions:

- Attack a v until isolating it from the network, which may also result in isolating several vertices or partitioning the entire graph.
- The attacker has full knowledge of the topology and of N_D.

Five attack models have been developed under the following assumptions:

Attack a v until isolating it from the network, which may also result in isolating several vertices or partitioning the entire graph.

The attacker has full knowledge of the topology and of N_D.

Five attack models have been developed under the following assumptions:

- Attack a v until isolating it from the network, which may also result in isolating several vertices or partitioning the entire graph.
- The attacker has full knowledge of the topology and of N_D.

Attack Models

- **AM**₁ The first driver node ν in a given ordered set N_D^{strategy}
- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest *betweenness centrality* of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

Then,

AM_1 The first driver node v in a given ordered set N_D^{strategy}

- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest *betweenness centrality* of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

- AM_1 The first driver node v in a given ordered set N_D^{strategy}
- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest *betweenness centrality* of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

- AM_1 The first driver node v in a given ordered set N_D^{strategy}
- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest betweenness centrality of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

- AM_1 The first driver node v in a given ordered set N_D^{strategy}
- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest *betweenness centrality* of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

- AM_1 The first driver node v in a given ordered set N_D^{strategy}
- AM_2 The driver node positioned in the middle of a given N_D^{strategy}
- AM_3 The last node driver of a given N_D^{strategy}
- AM₄ The node with the highest *betweenness centrality* of the graph
- AM_5 A random vertex outside a given N_D^{strategy}

Attack Models

Algorithm 3.1: ATTACK MODELS ($\mathscr{G}G(V, E), AM, \mathbf{N}_D^{\text{strategy}}$)

output (Isolation of a vertex for a given $\mathscr{G}(V, E)$); **local** target $\leftarrow 0$;

```
 \begin{split} \text{if } AM &== \text{AM}_1 \\ \text{then } \left\{ \begin{aligned} & \text{target} \leftarrow \text{N}_D^{\text{strategy}}[1]; \\ & \text{if } AM &== \text{AM}_2 \\ & \text{then } \left\{ \begin{aligned} & \text{target} \leftarrow \text{N}_D^{\text{strategy}}[(\text{SIZE}(\text{N}_D^{\text{strategy}}))/2]; \\ & \text{if } AM &== \text{AM}_3 \\ & \text{then } \\ & \left\{ \begin{aligned} & \text{target} \leftarrow \text{N}_D^{\text{strategy}}[(\text{SIZE}(\text{N}_D^{\text{strategy}}))]; \\ & \text{else } \end{aligned} \right\} \\ & \text{else } \left\{ \begin{aligned} & \text{if } AM &== \text{AM}_3 \\ & \text{then } \\ & \text{then } \\ & \text{then } \\ & \text{target} \leftarrow \text{N}_D^{\text{strategy}}(\text{SIZE}(\text{N}_D^{\text{strategy}}))]; \\ & \text{else } \\ & \left\{ \begin{aligned} & \text{target} \leftarrow \text{N}_D^{\text{strategy}}(\text{SIZE}(\text{N}_D^{\text{strategy}}))]; \\ & \text{then } \\ & \text{target} \leftarrow \text{DUTSIDE N}_D^{\text{strategy}}(\mathcal{G}(V, E), \text{N}_D^{\text{strategy}}); \\ & \text{ISOLATE VERTEX}(\mathcal{G}(V, E), \text{target}); \\ & \text{return } (\mathcal{G}(V, E)) \end{aligned} \right. \end{split}
```


Structural Controllability under Vertex Removal Experimentation

C. Alcaraz Structural Controllability

Experimental Design

Goal

To evaluate the behaviour of the three types of structural controllability strategies N_D^{max} ,

 N_D^{min} and N_D^{rand} against threats

Experimental Design

Goal

To evaluate the behaviour of the three types of structural controllability strategies N_D^{max} , N_D^{min} and N_D^{rand} against threats

Network characteristics

Sparse graphs to represent main critical infrastructures

Connectivity probability of $p_k = 0.3$ for ER/WS, $d^- = 2$ for BA for $\alpha \simeq 3$, *alpha* = 0.1, 0.3, 0.5 for PLOD

Networks with 50, 100, 500, 1000, 2000 nodes

Experimental Design

Goal

To evaluate the behaviour of the three types of structural controllability strategies N_D^{max} ,

 N_D^{min} and N_D^{rand} against threats

Network characteristics

Sparse graphs to represent main critical infrastructures

Connectivity probability of $p_k = 0.3$ for ER/WS, $d^- = 2$ for BA for $\alpha \simeq 3$, alpha = 0.1, 0.3, 0.5 for PLOD

Networks with 50, 100, 500, 1000, 2000 nodes

Robustness analysis

Connectivity: Diameter (Dm), density, average cluster coefficient (CC);

Observability: Percentage of remaining observable network using OR1

Degree of Connectivity

Network	Dm	Density	CC	Threat
ER	$N_{D_{small}}^{max,min,rand}$	$N_{Dsmall}^{max,min,rand*}$	$N_{D_{small}}^{\max*,\min*,rand}$	AM ₄
WS	$N_D^{\max,\min,\mathrm{rand}}$	-	N _D ^{max,min,rand*}	AM _{4,3}
BA	-	$N_{D_{small}}^{max,min,rand}$	$N_{D_{small}}^{min,rand}$	-
PLOD-0.1	$N_{D*}^{\max,\min,rand}$	-	$N_{D_{small}}^{\max*,\min,rand}$	AM ₄
PLOD-0.3	$N_{D*}^{\max,\min,rand}$	-	N _D small ^{max,min,rand} *	AM ₄
PLOD-0.5	$N_{D*}^{\max,\min,rand}$	-	$N_{Dsmall}^{max,min,rand}$	AM ₄

Degree of Observability

Network	Threat	Rate	Rate
ER	∀ <i>AMs</i>	\simeq [90 – 100%]	$N_{D_{small}}^{\max*,\min,rand*}$
WS	∀ <i>AMs</i>	\simeq [96 $-$ 100%]	$N_{D*}^{\max*,\min,\mathrm{rand}}$
BA	∀ <i>AMs</i>	\simeq [2 -100%]	$N_{D_{small}}^{\max**,\min,rand*}$
PLOD-0.1	∀ <i>AMs</i>	\simeq [99.40 $-$ 100%]	$N_{D_{small}}^{\max*,\min,rand}$
PLOD-0.3	∀ <i>AMs</i>	\simeq [98 $-$ 100%]	$N_{D_{small}}^{\max*,\min,rand}$
PLOD-0.5	$\forall AM_s$	\simeq [96 $-$ 100%]	$N_{D_{small}}^{\max*,\min,rand}$

Conclusions and Future Work

C. Alcaraz Structural Controllability

- We review the robustness of power-dominating sets (PDS) determining the controllability for several network topologies
- We studied the effects of several non-interactive attack types on the PDS and underlying graphs
- We conclude that:
 - Limited *targeted* attacks (specially *AM*₄) are disruptive *in terms of connectivity* for the most of topologies; and
 - in observability terms for scale-free networks

- We review the robustness of power-dominating sets (PDS) determining the controllability for several network topologies
- We studied the effects of several non-interactive attack types on the PDS and underlying graphs
- We conclude that:
 - Limited targeted attacks (specially AM₄) are disruptive in terms of connectivity for the most of topologies; and
 - in observability terms for scale-free networks

- We review the robustness of power-dominating sets (PDS) determining the controllability for several network topologies
- We studied the effects of several non-interactive attack types on the PDS and underlying graphs
- We conclude that:
 - Limited targeted attacks (specially AM₄) are disruptive in terms of connectivity for the most of topologies; and
 - in *observability terms* for scale-free networks

Ongoing and Future Work

We are currently continuing to investigate further, considering more complex multi-round attack scenarios

Design and implementation of optimized controllability recovery solutions preserving domination properties, and considering:

- The hardness of the PDS and its non-locality problem
- Aspects of optimization through parametrised approximations, with special focus on power-law topologies

Ongoing and Future Work

- We are currently continuing to investigate further, considering more complex multi-round attack scenarios
- Design and implementation of optimized controllability recovery solutions preserving domination properties, and considering:
 - The hardness of the PDS and its non-locality problem
 - Aspects of optimization through parametrised approximations, with special focus on power-law topologies

Cristina Alcaraz

Computer Science Department, University of Málaga, Spain Information Security Group, Royal Holloway, University of London, UK

alcaraz@lcc.uma.es

E. Etchevés Miciolino

Complex Systems & Security Laboratory, Universitá Campus Bio-Medico di Roma, Italy

S. Wolthusen

Norwegian Information Security Laboratory, Gjøvik University College, Norway Information Security Group, Royal Holloway, University of London, UK stephen.wolthusen@hig.no

